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Abstract. Elementary excitations of the 4kF charge density wave state of a quarter-filled strongly correlated
electronic one-dimensional chain are investigated in the presence of dispersionless quantum optical phonons
using Density Matrix Renormalization Group techniques. Such excitations are shown to be topological
solitons carrying charge e/2 and spin zero. Relevance to the 4kF charge density wave instability in (DI−
DCNQI)2Ag or recently discovered in (TMTTF)2X (X = PF6, AsF6) is discussed.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.50.Ee antiferromagnetics – 71.27.+a
Strongly correlated electron systems; heavy fermions – 75.40.Mg Numerical simulation studies

1 Introduction

It is well know that one-dimensional (1D) Su-Shrieffer-
Heeger (SSH) [1] or Hubbard-SSH models exhibit exotic
elementary excitations including neutral soliton with spin
1
2 , charged soliton with spin zero (1

2 -filled band) [2] as well
as fractionally charged soliton (1

3 - and 1
4 -filled band) [3,4].

In these models, the phonons couple to the electrons via
inter-site interactions which lead to an insulating Bond
Order Wave ground state (GS). In fact, such solitonic ex-
citations are also generic in commensurate site-centered
Charge Density Wave (CDW) states and, hence, should
also exist (in the vicinity of commensurate fillings) in
the case of strong short range electronic repulsion lead-
ing to commensurate 4kF charge instability. In addition to
strong electron-electron correlation, local on-site electron-
phonon (e-ph) coupling (to be compared with the inter-
site vibration in the SSH model) is of particular relevance
in systems where the “site” represents a complex struc-
ture with internal degrees of freedom. Molecular crystals
such as the quasi-1D charge transfer salts [5] present this
type of characteristic. Interplay between electron-electron
and e-ph interactions provides a very rich physics. For
example, several systems have been recently observed to
present transitions towards charge ordered phases where
the molecules of the conducting stack support unequal
electron densities, and in some cases associated relaxation
of their internal geometry. This is for instance the case for
the most strongly 1D system of the Bechgaard-Fabre salts
family, namely (TMTTF)2PF6 and (TMTTF)2AsF6; be-
low the Mott localization temperature Tρ evidences for an
additional transition towards a 4kF (site-centered) CDW
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state have been recently provided by dielectric response
measurements [6], NMR [7] and anomalous temperature
dependence of the X-ray Bragg peaks [8]. Similar transi-
tions have been seen in (BEDT − TTF)2X [9] as well as
in (DI − DCNQI)2Ag [10] which exhibits below 220 K a
4kF CDW associated with geometry modulations of the
DI−DCNQI molecules.

A pictorial description of a solitonic state can be sim-
ply given assuming e.g. a quarter-filled strongly corre-
lated chain, in a 4kF CDW state, provided a doubling
of the unit cell. In that case, the GS charge modulation
can be parametrized as 〈ni〉 = 1

2 + A4kFcos(4kFri + φ)
where kF = π/4, A4kF is the magnitude and φ the phase
of the charge oscillation. Hence, due to the equivalence
between the even and odd sites, the GS is two fold degen-
erate (φ = 0 and φ = π). A solitonic excitation can be
described as a state which interpolates between the two
different GS patterns with a slowly monotonically vary-
ing phase φ(ri) from let’s say 0 at ri → −∞ to π when
ri → +∞. Simple counting arguments show, in fact, that
such an excitation carries a chargeQ = ± e

2 and, therefore,
can be generated by doping the commensurate CDW GS.

In this paper, we investigate the role of quantum lo-
cal phononic (optical) modes on the formation and on the
stability of the solitonic excitations occurring in an insu-
lating 4kF CDW phase of a quarter-filled strongly corre-
lated electronic chain. This issue is of particular interest
since a coupling to local phonons might affect the physics
of the solitons (such as its width, its interaction, etc...).
Numerical results will be obtained by the Density Matrix
Renormalization Group (DMRG) method applied to open
or cyclic chain segments carrying no, a single or two soli-
tonic excitations.
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2 Model

The following analysis is based on the 1D t-J-V -Holstein
model at quarter filling. This model describing strongly
correlated electrons coupled to dispersionless phonons
can be written as H = He +He−ph with

He = t
∑
i,σ

(
c†i+1,σci,σ + h.c.

)
+ J

∑
i

Si ·Si+1+V
∑
i

nini+1

He−ph = g
∑
i

ni
(
b†i + bi

)
+ ω

∑
i

(
b†ibi + 1/2

)
(1)

where c†i,σ, ci,σ are projected creation and annihilation
operators of electrons of spin σ at sites i (doubly occu-
pied sites are projected out, the strong correlation limit is
therefore assumed), ni is the electron number and Si is the
spin operator at site i. b†i and bi are the local phonons cre-
ation and annihilation operators. The energy scale is fixed
by t = 1. Note that the phononic part can be re-written as
ω
[(
b†i + ni

g
ω

) (
bi + ni

g
ω

)]
+ const. showing that the cou-

pling of the on-site vibrations to the electrons induces dis-
placements of the oscillator proportional to the site charge.
In fact, this term mimics the relaxation of the internal ge-
ometry of a site as a function of its ionicity.

Before proceeding further, it is interesting to exam-
ine the adiabatic limit. Absorbing the e-ph coupling g
in the definition of the (classical) on-site displacement
g(b†i +bi)→ δi, the phononic part takes the form of a clas-
sical elastic energy 1

2K
∑
i δ

2
i . The magnitude of the e-ph

coupling is then given by a single parameter, the inverse
lattice stiffness K−1 = 2g2/ω. Hence, the adiabatic limit
is reached assuming the following limits; ω → 0, g → 0
and K−1 → const. The phase diagram of this model has
been investigated recently by Riera and Poilblanc [12]. It
is well know that a quarter-filled infinite-U (i.e. J = 0)
model exhibits a 4kF CDW (Mott-Hubbard like) insta-
bility only when the nearest neighbor (NN) repulsion V
exceeds 2 [11]. This instability is in fact enhanced by the
lattice coupling and the 4kF CDW phase becomes sta-
ble even when V < 2 (and J finite) for K−1 exceeding a
V -dependent critical value [12]. The numerical study of
the model with quantum phonons using the infinite system
DMRG method [13] requires an approximate (but reliable)
treatment of the phonon degrees of freedom [14–16]. In-
deed, an infinite number of phononic quantum states lives
on each site. In order to render the calculations feasible,
the basis set has been truncated on each site to the two
lowest vibronic states. This choice is physically reasonable
as long as the frequency ω is not too small since only the
lowest vibronic states are expected to be involved [16].
In all cases, we kept m = 216 states per renormalized
block. We have chosen parameters like V = 1 and J = 0.3
which are generic for strongly correlated 1D materials.
For such parameters, the adiabatic GS is a 4kF CDW for
K−1 > K−1

crit ∼ 1.1. GS and solitonic states of the system
have been investigated as a function of ω and K−1.

In order to determine the phase diagram at quarter-
filling, we have computed the charge gap ∆ρ =
E0(2N,N + 1) + E0(2N,N − 1) − 2E0(2N,N) (where
E0(Ns, Ne) is the GS energy of Ne electrons on Ns sites).
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Fig. 1. Schematic phase diagram of a 1/4-filled t-J chain for
J/t = 0.3 and V/t = 1 as a function of K−1 = 2g2/ω and g/ω.
The two shaded regions correspond to insulating 4kF CDW
phases, the dark-shaded one corresponding to the saturated
4kF CDW phase : A4kF ' 1/2. The slanted region corresponds
to the Luttinger liquid uniform phase. The solid lines, extrap-
olated by dashed lines correspond to iso-gaps curves, the dot-
dashed lines correspond to iso-frequencies curves. The num-
bers correspond to the width, ξ, of the solitons at the reported
points.

For that purpose, we have used open boundary conditions
(OBC), systems up to 50 sites and extrapolated the re-
sults to the thermodynamic limit. Note that OBC are used
in gap calculations because the DMRG method performs
better in this case than with periodic boundary conditions
(PBC). In addition, we have also calculated the charge cor-
relation function cn(j) = 〈(ni − 〈n〉)(ni+j − 〈n〉)〉 where
〈n〉 = Ne/Ns.

3 Results and discussion

Figure 1 shows the schematic phase diagram as a func-
tion of g/ω and K−1 exhibiting a 4kF CDW insulating
phase and a uniform metallic phase with usual Luttinger
liquid characteristics (in particular the power law decrease
of the charge and spin correlation functions). It has been
argued that, although phononic quantum fluctuations are
present, such state still belongs to the Luttinger Liquid
universality class [14,16]. The insulating 4kF CDW phase
was characterized both by a finite charge gap and long
range staggered charge correlations associated to the fi-
nite order parameter (−1)jcn(j). Special care is needed
for ω → 0 since, in this case, the truncation of the phonon
basis is no more adequate and more phonon states are
expected to be excited. Indeed, K−1

crit ' 1.1 obtained in
the adiabatic approximation [12] does not seem to appear
as an asymptotic limit for the metal-insulator boundary
when ω → 0 and g/ω → +∞. Within our treatment,
K−1

crit tends towards zero, which seems inconsistent with
the finite value K−1

crit ' 1.1 obtained in the adiabatic ap-
proximation [12] for the same J and V values. Therefore,
we shall restrict in the following analysis to ω > 0.1 where
we expect our results to be fully reliable.

Let us now discuss the effect of the frequency ω at
fixed K−1: for values of K−1 such as the adiabatic GS is in
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Fig. 2. Charge gap versus K−1 = 2g2

ω for different frequencies
(as indicated on the plot).

the insulating phase, we found that, by increasing ω, the
system becomes metallic. As one can expect, increasing
phonon quantum fluctuations suppress long-range CDW
order. The opening of the charge gap characteristic of the
metal-insulator transition is fully consistent with the for-
mation of the CDW as shown in Figure 2 and in Figure 1
where the iso-gap curves are reported. At intermediate
frequencies (let’s say ω ≥ 0.3), we observe a smooth open-
ing of the gap with a saturation for large value of K−1,
whereas for decreasing frequencies the transition seems to
become more abrupt. This behavior is in agreement with
the first order character of the metal-insulator transitions
in the adiabatic limit, as seen in reference [12]. In con-
trast, our calculation at finite phonon frequency is consis-
tent with a second order phase transition and a Kosterlitz-
Thouless exponential gap opening (∆ρ ∼ e−α/(K

−1−K−1
c )).

A very accurate determination of the phase transition
characteristics would however be difficult. Indeed, as in
the ω → 0 limit, high excited vibronic states should be
populated at the transition and therefore the necessary
truncation of the phononic basis prevents a precise de-
scription of it. In fact systematic bias toward the insulat-
ing phase can be expected.

By doping (e.g. in electrons) the chain away from the
commensurate density of 〈n〉 = 1/2 one can introduce
charged soliton-antisoliton pairs. Note that solitons nat-
urally appear in pairs since they are intrinsic topological
excitations. However, in a finite chain, it is possible to
enforce the existence of a single soliton in the GS by as-
suming an odd number of sites. For this purpose, we shall
deal with odd-length chain with Ns = 2N + 1 sites and
Ne = N + 1 electrons (typically we choose N = 2p + 1)
and PBC. Chains with size up to 43 sites have been con-
sidered. On the other hand, even-length periodic chains
with Ns = 2N sites (typically choosing N = 2p + 1)
doped with 1 extra electron (Ne = N + 1) of size up to
42 sites have been considered to study the behavior of
a soliton-antisoliton pair. The charge-charge correlation
in an odd-length chain carrying a single soliton is shown
in Figures 3a–c for different values of the parameter g/ω
and fixed frequency ω = 0.3. For increasing e-ph coupling
(or equivalently in this case for increasing K−1), the sys-
tem evolves from a delocalized state with no soliton (cf.
Fig. 3a) to a state with a soliton confined on a small num-
ber of sites. (cf. Fig. 3c). Figure 3b shows the intermediate
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Fig. 3. Charge correlation function of an odd chain Ns = 43,
Ne = 22 for several couplings g. For convenience data of the
same (opposite) sign as (−1)j are shown as full (open) symbols.
For clarity, the soliton has been shifted to the center of the
chain.

regime where a soliton exists and spreads over a large num-
ber of sites (in fact over all the 43 sites of the largest chain
considered in this work). In fact, a solitonic excitation be-
comes stable and acquires a width and an amplitude at
the phase transition point where the CDW order parame-
ter starts to grow. This width decreases and the amplitude
increases as K−1 increases up to saturation (one inter-site
distance for the width and 1/2 for the amplitude). It is
remarkable to note that the on-site displacements strictly
follow the on-site charges, irrespectively to the relative lo-
cation to the soliton. Similarly, the excited phonon state
remains weakly populated even at the soliton location,
validating the pertinence of the basis set truncation as
long as one is not at the phase transition. In order to es-
timate the width of the soliton, one can fit the staggered
charge correlation function with a usual solitonic function
A tanh(x−x0

ξ ) where A is the long-range CDW amplitude,
ξ is the width of soliton (reported in Fig. 1) and x0 is
the location of the center of the soliton. When the gap
is saturated the soliton is totally confined to, let say, a
single site. On the contrary, in the uniform phase, strictly
speaking A ' 0 and the charge correlation function de-
cays as a power law. In that case, the extra Q = + e

2
charge is totally spread over the full chain. Around the
(infinite size) phase transition line between the uniform
and CDW phases, the soliton will appear spread out over
the entire finite system whenever its size (in the infinite
system limit) becomes larger than the actual system size.

In the CDW phase, the DMRG procedure introduces
(despite of the PBC) a small translation symmetry break-
ing (contained in the initial state) which leads to a lo-
calization of the soliton around some arbitrary location
x0 along the chain. This indicates that, in real materials,
this type of excitation could very easily get pinned by im-
purities or defects. However we still expect the soliton to
be mobile in a perfectly pure system.

So far, we have imposed the presence of a single soli-
ton in the GS by a geometrical mean. However, in order to
fully prove the stability of such excitations one should also
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�
(b) for an even chain with Ns = 38, Ne = 20,

frequency ω = 0.2 and 2g2/ω = 2.25. For convenience, the two
sets of data corresponding to the two sublattices (“even” and
“odd” sites) are shown separately as full and open symbols.

consider a situation where at least two of them can scat-
ter with each other. For this purpose, a full extra charge
Q = +e has been added to a cyclic ring with an even
number of site on top of the CDW GS. The charge cor-
relation function shown in Figure 4a indicates that a soli-
ton and an antisoliton well separated from each other ap-
pear. For a fixed system size and different runs, we have
found that the location of the soliton-antisoliton “center
of mass” is arbitrary, but the calculated mean distance
ds−s̄ between the two solitons stays the same. For increas-
ing system size Ns, the distance ds−s̄ increases exactly like
ds−s̄ = Ns

2 . This demonstrates that independent solitons
and anti-solitons are stable in the CDW phase and do not
bind into charge e quasiparticles. Note that the solitonic
charge Q = + e

2 can be directly “measured” by integrating
the excess charge over the soliton width. It is also inter-
esting to notice that previous studies on spin 1

2 solitons
in spin-Peierls chains with dynamical phonons [17] have
demonstrated that soliton-antisoliton bound states can-
not exist unless a two-dimensional coupling is considered.
Quite generally reference [4] predicts solitons to have ei-
ther spin zero or spin-1/2. In fact, the on-site average spin
plotted in Figure 4b shows that, in the present case, each
soliton carries no spin.

4 Conclusion

We finish this paper by a brief discussion on the possible
relevance to experimental systems. It is clear that with on-
site CDW associated with differential geometry relaxation
of the DI−DCNQI molecules, the (DI−DCNQI)2Ag com-
pound is the perfect candidate for the present study. Note
that under 5.5 K [18] this compound undergoes a second
phase transition towards an 4kF CDW, 2kF SDW mixed
state. As already mentioned by different authors [16,19],
on-site 4kF CDW have the property to allow simultane-
ous 2kF SDW. Although the metal-insulator instability in
(TMTTF)2X (X = PF6, AsF6, etc...) is believed to be of
the Mott-Hubbard type, the recent experiments [6–8] re-
vealing, at lower temperatures, a 4kF charge modulation
on the (TMTTF) molecules suggest that relaxation of the

molecules (together with the coupling to the anions) might
play a dominant role. Therefore, fractionally charged ex-
citations should appear (although a dimerization exists
along the molecular stacks) and might be revealed in
e.g. optical experiments. Note that it has also been theo-
retically suggested that the low temperature spin-Peierls
phase would exhibit, in addition to the lattice tetramer-
ization, a site-centered 2kF CDW state [19]. Recent cal-
culations [20] suggest that, in the case of a coexisting 2kF

CDW order, two charge e
2 solitons would bind. It would

therefore be of particular interest to see how molecular re-
laxation and bond charge density wave resulting from the
SP transition would interact and in particular whether
the later could coexist with on-site 4kF CDW or whether
the lattice dimerization would bind two e/2 solitons in
order to restore an integer charge defect.
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